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MINIMUM DRAG BODIES WITH CROSS-SECTIONAL ELLIPTICITY 

By Jer ro ld  H. Suddath and Waldo I. Oehman 
Langley Research Center 

SUMMARY 

Newtonian flow theory and the  calculus of var ia t ions were used t o  study 
m i n i m  drag shapes f o r  bodies with cross-sectional e l l i p t i c i t y  a t  hypersonic 
speeds and zero angle of a t tack.  The study w a s  made f o r  conditions of given 
length and base height, given length and volume, given base height and volume, 
and given base height and surface area. Numerical examples f o r  conditions of 
given length and base height and given length and volume a r e  presented t o  assess 
t h e  e f fec t  of cross-sectional e l l i p t i c i t y  on body shape and pressure drag coef- 
f i c i e n t .  
shapes w i t h  given length and volume. 

The method of s teepest  descent w a s  used f o r  computations of body 

INTRODUCTION 

The problem of determining the  shapes of bodies of revolution with m i n i m  
pressure drag at hypersonic speeds w a s  t r ea t ed  i n  reference 1. The analysis 
t he re in  w a s  based on Newtonian flow theory and t h e  calculus of variations,  and 
t r ea t ed  a var ie ty  of constraints  comprising combinations of length, volume, 
base diameter, and surface area.  If bodies with e l l i p t i c a l  ra ther  than c i rcu lar  
cross sections are considered, t he  solut ion w i l l  no doubt be lengthier,  but of 
s i m i l a r  form. A s  yet, minimum drag bodies with e l l i p t i c  cross sections have not 
been treated; however, experiments with bodies with e l l i p t i c a l  sect ions have 
shown (refs. 2 and 3 )  t h a t  increasing cross-sectional e l l i p t i c i t y  ( t h a t  is, 
increasing t h e  r a t i o  of horizontal  ax is  length t o  v e r t i c a l  axis  length)  r e su l t s  
i n  higher l i f t -d rag  r a t i o  a t  both subsonic and supersonic speeds. Therefore, 
t h e  theore t ica l  determination of minimum drag shapes with e l l i p t i c  cross sec- 
t i o n s  would provide t h e  bases f o r  extrap, - A l  of present data  and f o r  fur ther  
experimental invest igat ions.  

This report  presents some theo re t i ca l  r e s u l t s  concerning the  e f f ec t  of 
cross-sectional e l l i p t i c i t y  on the  geometry and pressure drag of minimum drag 
bodies. 
r e s u l t s  f o r  conditions of given base height and volume and given base height 
and surface area; whereas, a more de ta i led  study w i l l  be applied t o  the  condi- 
t i ons  of given base height and length, and given length and volume. Quantita- 
t i v e  results f o r  given length and volume w i l l  a l s o  be obtained by the  method of 
s teepest  descent. This numerical method, developed by Kelley e t  al .  ( r e f .  k ) ,  
i s  an i t e r a t i v e  procedure t h a t  may be programed f o r  a d i g i t a l  computer. 

The calculus of var ia t ions will be applied t o  obtain qua l i ta t ive  



SYMBOLS 

A a rea  of body cross sect ion 

CD pressure drag coeff ic ient  

CY Cl, c2, c3, c4, c5 constants of in tegra t ion  

C constant 

D drag, l b  

E($, k) 
complete e l l i p t i c  i n t eg ra l  of second kind 

Delete symbol [Fly and t h e  de f in i t i on  f o r  it. 

F(y,y') integrand of equation ( 5 )  

f ( y , y l )  

G 

g(y,y')  integrand of equation (2)  

I 

J 

6J first  var ia t ion  of J 

integrand function (see eq. ( 3 ) )  

i n t eg ra l  defined by equation (2)  

i n t e g r a l  defined by equation ( 3 )  

i n t eg ra l  defined by equation ( 5 )  

K(:,k) 
complete e l l i p t i c  i n t eg ra l  of f i rs t  kind 

k modulus of e l l i p t i c  in tegra ls  

2 body length, f t  
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m constant 

n f i z  f ineness  ra t io ,  - 

P exponent f o r  power-law body shape, (q = mep)  

free-stream dynamic pressure, lb/sq f t  s, 
S surface area, sq f t  

V volume, cu f t  

XYYY z 

Page 3,  l i n e  8: Delete symbol 6y and the  de f in i t i on  f o r  it. 

orthogonal coordinates of body 
i ,, / 

Page 3, l i n e  8 and following l ines :  In se r t  the  following symbols and 
def ini t ions:  

6 denotes var ia t ion  consistent with prescribed boundary conditions 

denotes var ia t ion  taken a t  a constant s t a t i o n  x 

a00) a r b i t r a r y  prescribed function of yo 

E nondimensional coordinate x/2 

Subscripts : 

0 condition at body nose 

1 condition at body base 

A prime ( ’) denotes d i f f e ren t i a t ion  with respect t o  the  independent 
var iable .  

PROBLEM F O W I O N  AND SOLUTION 

Statement of t he  Problem 

The problem considered herein i s  s t a t ed  as follows: Given a body with 
cross-sectional e l l i p t i c i t y ,  f i nd  the  shape t h a t  minimizes t h e  pressure drag 
and s a t i s f i e s  ( i n  some instances)  an i n t e g r a l  constraint .  The body is  assumed 
t o  be at zero angle of a t tack  and t h e  pressure drag i s  obtained from Newtonian 
flow theory. 
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Y The geometry of the  problem i s  
represented by f igure  1. 
assumed t o  be moving i n  the  negative 
x-direction. Any plane given by the  
equation x = c, with 0 5 c 2 2 
i n t e r sec t s  the  body i n  an e l l i p s e  with 
minor and major axes p a r a l l e l  t o  t he  
y and z axes, respectively.  For 
every value of x i n  t he  in t e rva l  
0 5 x 6 2, t he  r a t i o  of t he  minor t o  
t h e  major axis of the  e l l i p s e  i s  the  
constant p. 

The body i s  

x The Newtonian flow theory ( see  
ref. 5 )  shows t h a t  t he  pressure drag 
act ing on the  body may be given by 

9 

D = 
CI + L' 

Typical body section: ellipticity, LA b 

Figure 1.- Sketch showing coordinate system. where y '  = - dy i s  the  slope of the  

body i n  the  x,y plane. Mathemati- 
dx 

cal ly ,  t h e  problem reduces t o  the  x,y plane because of symmetry and 
constant p. 

The in t eg ra l  constraint ,  when required, w i l l  be denoted by 

2 
= W o )  + s, d Y , Y ' > &  (2) 

The problem may now be s ta ted  mathematically as follows: Find the  func- 
t i o n  y = y(x) so t h a t  D i s  minimized and subject t o  t h e  constraint  t h a t  G 
be a prescribed value. 

Method of Solution and R e s u l t i n g  Equations 

The problem may be conveniently solved by t h e  method of t h e  calculus of 
var ia t ions.  
t o  define t h e  quantity I as 

I n  applying the  calculus of var ia t ions  (ref. 6), it i s  convenient 

where t h e  upper l i m i t  of integrat ion 
t h e  body length and 

x1 i s  var iable  t o  permit var ia t ions  i n  

4 



I 

then J, t h e  quantity t o  be minimized, i s  given by 

and h i s  a constant Lagrange mult ipl ier .  C a l c u l a t i n g  t h e  first var ia t ion  of 
J and setting it equal t o  zero leads t o  

From fami l ia r  arguments concerning t h e  a r b i t r a r y  var ia t ion  6y, equation (7)  
leads t o  t h e  following four  conditions: 

(1.) The Ner-Lagrange equation which must be s a t i s f i e d  over t h e  in t e rva l  
O ~ X S X ,  is 

Fy - a FYt = O 

Since x does not appear e x p l i c i t l y  i n  F(y,y'), t h e  f irst  in t eg ra l  of equa- 
t i o n  (8a) i s  

y'Fy' - F(y,y ' )  = C 

where C i s  a constant. 

(2 )  The terminal condition which must be s a t i s f i e d  a t  x = 0 is 

( 3 )  The terminal condition which must be s a t i s f i e d  at  x = xl i s  e i t h e r  

= o  
Fy ' I x=x1 

5 



“when the  base height i s  not prescribed, orl) 

when the  body length i s  not specif ied.  

(4)  Furthermore, t he  solut ion y(x) must be such t h a t  the  Legendre con- 
d i t i o n  i s  s a t i s f i e d  everywhere along t he  extremal; t h a t  i s  

It will be seen, a pos t e r io r i ,  t h a t  it i s  unnecessary t o  consider the  
Weierstrass-Erdmann ver tex condition. 

Specif ic  Solutions 

From the  preceding discussion, it is  apparent t h a t  some information about 
t h e  in t eg ra l  constraint  and the  terminal conditions must be specif ied i n  order 
t o  obtain a meaningful solut ion t o  the  problem. Therefore, the  solut ion curve 
y(x)  
height, given length and volume, given base height and volume, and given base 
height and surface area.  In t eg ra l  constraints  a r i s e  when e i t h e r  t h e  volume or 
t h e  surface a rea  is  spec i f ied  and a r e  

will be examined ana ly t i ca l ly  f o r  conditions of given length and base 

f o r  given volume, and 

f o r  given surface a rea  where E($,k) i s  a complete e l l i p t i c  i n t e g r a l  of t h e  
second kind and 

Specified base he ight  and length.- The function F(y,y’) given by equa- 
t i o n  (6) f o r  t he  problem of specif ied base height and length, i n  e x p l i c i t  form, 
is 

6 



Equations (8b) t o  (12) may be wri t ten exp l i c i t l y  i n  the  following way: 

(1) The first in t eg ra l  of the  Ner-Lagrange equation, equation (8b), i s  
P 

= c1 (16) 
2&2p2 + (1 + p2)Y'2] 

[(l + Y'2)(cL2 + Yf2] 
3/2 

( 2 )  The terminal condition at  x = 0, equation ( g ) ,  is  

3) For the  terminal condition at  t h e  base of t he  body nei ther  equa- 
t i o n  I 10) nor (ll) apply since length and base height a re  given. 

(4)  The Legendre condition ( inequal i ty  (12) )  i n  exp l i c i t  form can be 
wri t ten as 

7 

From simple physical considerations, t h e  solut ion y( x) should s a t i s f y  
y(x)  2 0 f o r  0 5 x 2, and, it w i l l  be assumed t h a t  y(2)  > 0. With 
y(x) > 0 the  Legendre condition i s  s a t i s f i e d  i f  

The curve 

known result ( r e f .  3 )  t h a t  
(p) i s  p lo t t ed  i n  f igure  2 and i s  seen t o  agree with the  well- 

ymax 
y&(Z) = f o r  t h e  b d y  of revolution. 

Equation (16) requires t h a t  y(0)  > 0. If y(0)  = 0, then C 1  = 0 and 
t h i s  condition requires e i t h e r  t h a t  y (x)  = 0 o r  t h a t  y ' (x )  = 0 ,  Physical 
conditions, however, make y(x) = 0 untenable, and terminal conditions at  
x = 0 require t h a t  y ' (x)  > 0. Therefore, y(0) must be grea te r  than zero; 
and, thus, t h e  body has a f lat  nose. 

With y(0) > 0, equation (17) yie lds  y ' (0 )  as a function of the  e l l i p -  
t i c i t y  parameter p. For convenience, t h i s  function i s  p lo t ted  i n  f igure  2 and 
is  well  below t h e  Legendre boundary. 

7 



1.8 r 

Now 

I 1 - . I  
.1 .2 .3 .L .5 .6 .7 .5 1.0 

. 6 L I I  -L ~. 1 

Ellipticity, y 

Figure 2.- Effect of e l l i p t i c i t y  on slope of minimum drag bodies. 

Equation (16) may be solved f o r  y(x)  t o  obtain 

Taking the  der ivat ive of equation ( 1 9 )  with respect t o  
r e s u l t  i n t o  equation ( 2 0 ) ,  and subsequently in tegra t ing  y ie lds  

y ' ,  subs t i tu t ing  the  

2y2 + (1 + l,,p(l + y q y 2  + yl2)  + y'2 + - - i 
I +- 1 + p2 8$(1 + y2) 



The constant of integrat ion C2 i n  equation (21) may be determined i n  
terms of C 1  by subs t i tu t ing  y ' (0 )  and x = 0 f o r  y '  and x, respectively.  
Since y(2) and x = 2 a re  given, they mvy be subst i tuted i n t o  equations (19) 
and (21) t o  obtain two equations which may be solved simultaneously t o  determine 
y ' (2 )  and C1. Finally, by choosing values of y '  between y ' (0)  and y ' (2) ,  
x and y(x) may be computed t o  define t h e  body shape completely. The numer- 
i c a l  work may be programed f o r  a d i g i t a l  computer. 

Specified - le-pgth and volume.- The in t eg ra l  constraint  f o r  t h e  problem of 
specified length and volume i s  given by equation (13) and the  integrand func- 
t i o n  i s  

Equations (8b) t o  (12) i n  exp l i c i t  form are as follows: 

(1) The first in t eg ra l  of t h e  Euler-Lagrange equation i s  

( 2 )  The terminal condition a t  x = 0 i s  the  same as f o r  t h e  preceding 
problem. Therefore, equation (17) i s  applicable.  

(3) The terminal condition at  x = 2 (es .  (10)) i s  

f 

(4 )  The discussion of t h e  Legendre condition presented f o r  t h e  preceding 
problem i s  applicable f o r  t h e  present problem. 

For y(2) > 0, equation (24) requires t h a t  y ' (2 )  = 0 and thus 
2 

c3 = - A E ( Z g  . (See eq. (23).)  Furthermore, equation (23) yields  

9 
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where 

from which it can be seen t h a t  
f a c t  t h a t  

ca l ly  zero i f  

y(0)  f 0. This nonidentity follows from t h e  
y l >  0, and t h e  right-hand s ide of equation (25) cannot be ident i -  

y1 # 0. 

Now, 

Further, t h e  volume in t eg ra l  i s  

Numerical solut ions may 

(1) Approximate a value 
obtain hy as a function of 

be obtained by t h e  following procedure: 

f o r  hyl and subs t i t u t e  it i n t o  equation (25) t o  
p and y ' .  

( 2 )  Integrate  equation (27) from ~ ' ( 0 )  t o  ~ ' ( 2 )  = o t o  evaluate AZ 
and, hence, A. 

( 3 )  The value of Ayl i s  adjusted u n t i l  t h e  computed value of A satis- 
f ies  t h e  volume constraint  (eq. (28)) f o r  t h e  specif ied volume. 

(4 )  The body shape may then be computed by simultaneous solut ion of equa- 
t ions  (23) and (27). 



I n  addi t ion t o  t h i s  procedure, the  method of s teepest  descent, which i s  a 
powerful t o o l  f o r  computing optimum t r a j ec to r i e s ,  may a l s o  be used t o  compute 
the  desired minimum drag body shapes. This method w a s  i n  f a c t  used t o  make the  
calculat ion i n  preference t o  the  previously outlined procedure because of t he  
convenience it afforded the  authors. 
reformulation of t h e  problem so t h a t  t he  method of s teepest  descent, which i s  
discussed a t  length, may be used t o  obtain solut ions.  

The appendix presents t he  necessary 

Specified base- height and volume.- The integrand function f o r  specif ied 
base he igh tand  volume i s  the  same as f o r  t h e  preceding problem. 

The other  equations of importance a re  as follows: 

(1) The first i n t e g r a l  of t he  mer-Lagrange equation i s  

where 

(2)  Equation (17) i s  appl icable ' for  t h e  terminal condition at  x = 0, and 
~ ' ( 0 )  i s  a function of p. (See fig. 2.) 

x = x1 (3) The terminal condition a t  (eq. (11)) i s  

(4 )  The Legendre condition given by equation (18) and the  discussion of 
equation (18) apply t o  the  present problem. 

Equation (32) requires t h a t  C 4  (eq. (30)) be zero. Thus, equation (30) 
may be solved f o r  y = y(y' ,h) t o  give 

The condition t h a t  y(0)  = 0 s a t i s f i e s  the  terminal constaint  at the  
body nose (eq. (l7)), and from equation (33), the  slope at the  nose is  zero 

11 



( ~ ' ( 0 )  = 0).  
increases.  However, t he  slope must not exceed the  values given by the  Legendre 
boundary ( f i g .  2) .  
have a cusped shape. 

Further, t he  slope of t h e  body must increase monotonically as  x 

Thus, t he  bodies f o r  a given base height and volume w i l l  

The minimum drag body shape may now be completely defined by equation (33) 
and 

for 0 < p < 1 and 

x = q ' 4  + $-I 
l + Y  

f o r  p = 1 (body of revolution).  

I n  order t o  avoid unnecessary computations t h a t  r e su l t  from some select ions 
of volume and base height, a useful  guide i s  obtained by considering the  volume 
i n t e g r a l  given by 

or, expl ic i t ly ,  

1 2  



m e r e  

The minimum allowable value of t h e  r a t i o  V/y13 may be obtained by integrat ing 

equation (38) with t h e  slope given by t h e  Legendre boundary 

t h e  upper l i m i t  of integrat ion.  A p lo t  of V ( Y 1 '  = Y&(P)) i s  presented as 

a function of e l l i p t i c i t y  p i n  f igure  3 .  

yl' = yA,(p)) as ( 

y13 

Minimum drag body shapes f o r  given base height and volume (with 
yo = yo' = 0) may be computed by the  following procedure. 
and volume chosen such t h a t  

With the  base height 

equation ( 3 3 )  and e i t h e r  equa- 
t i o n  (35) o r  (36) are solved s i m u l t a -  
neously f o r  y and x f o r  an 
assumed value of h. The value of h 
i s  adjusted u n t i l  t he  resu l t ing  body 
shape satisfies the  in t eg ra l  con- 
s t r a i n t  (eq. (13)) f o r  t h e  desired 
volume. 

Bodies having blunt noses 
(y( 0) > 0) are a l so  possible, but 
generally they have a fineness r a t i o  
much l e s s  than 1 and t h e  height at 
t h e  nose i s  of t h e  same order of 
magnitude as the  base height.  Con- 
sequently, t h e  bodies resemble t h i n  
disks with cusped edges. Equa- 
t i ons  (33) and (34) mus t  be solved 
simultaneously t o  obtain t h e  body 
shape, whereas h and yo must be 
adjusted t o  s a t i s f y  t h e  volume con- 
s t r a i n t  and the  terminal conditions. 

16 
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V - 
YLJ 
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2 
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Specified base height and sur- 
face  area.- The in t eg ra l  constraint  
f o r  t h e  problem of specif ied base 
height and surface area is  given by 
equation (14), and t h e  integrand 
function i s  

\ 

.4 .6 .8 1.0 

Bcdy ellipticity, p 

Figure 3. -  Minimum values of v/y13 fo r  mini- 
m drag bcdy shapes with given base height 
and volume. yl1 = yi,(~).  
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Equations (8b) to (12) then are as follows: 

(1) The first integral of the Euler-Lagrange equation is 

where K($,k) and E($,.> are complete elliptic integrals of the first and 

second kind, respectively. 

(2)  The terminal condition at x = o is 

(3) The terminal condition at x =.xl (eq. (11)) requires that C5 = 0 

(eq. (41)). 
(4) The Legendre condition in explicit form is 

14 



For y(x) > 0 and C 5  = 0, t h e  slope y' (x)  i s  constant (eq. (41) ) .  
Thus, t h e  bodies are cones with e l l i p t i c a l  cross sections.  

The complete solut ion t o  t h e  problem i s  obtained i n  the  following way: 
The in t eg ra l  constraint  (given surface area) i s  (eq. (14))  

Since y ' (x)  = constant, y = y'x, so  t h a t  

However, xl 3 w, and 
Y '  

- =  " \jl+y,2 E ( 5 k )  [y(xll] 
2 Y '  

o r  

PS - - E(?&k) (44) 
Y' 

2 F ( X l J  

Equation (44) may be solved f o r  y '  with given y(xl) and surface area. 
Further, 

xl=-- Y ( " d  - 2  
Y '  

may be evaluated. 

Finally, t h e  value of y '  from equation (44) m a y  be subst i tuted i n t o  
equation (41) t o  evaluate A. O f  course, A and y '  must s a t i s f y  t h e  
Legendre condition, inequal i ty  (43), f o r  an admissible solution. 

RFSULTS OF COMPUTATIONS 

The problem of determining minimum pressure-drag body shapes with e l l i p t i -  
c a l  cross sect ions has been formulated, t h e  solut ions have been discussed 
qual i ta t ively,  and procedures have been presented t o  a id  numerical solutions.  
The remainder of t h e  present report  w i l l  be a presentat ion of t h e  r e su l t s  of 



computations f o r  t h e  conditions of given base height and length and given 
length and volume. 
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To assess t h e  e f f ec t  of body-section e l l i p t i c i t y  on t h e  geometry and pres- 
sure drag of minimum drag shapes, calculations were m a d e  f o r  bodies with given 
length and base height and given length and volume. For convenience, t h e  cal-  
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culations were m a d e  f o r  f ineness r a t i o s  ( n = - 2;)) of 5 and 10. Furthermore, 
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- .  . ,  
body coordinates were made nondimensiond by dividing by the  body length 2 

X t h a t  is, 5 = i, and 7 = f). The calculat ions were made f o r  values of t h e  ( 
e l l i p t i c i t y  parameter p ranging from 0 . 1 t o  1.0. 
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- 
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- 

- 
- 

- 
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Body shapes f o r  given base height and length were calculated by programing 
equations (19) and (U) f o r  a d i g i t a l  computer. 
logarithmic p lo t s  of t h e  bodies with fineness r a t i o s  of 5 and 10, respectively, 
and are presented t o  indicate  t h e  degree of v a l i d i t y  of t h e  approximation 
7 = mEP, where m and p a re  constants. This approximation p lo t s  as a 
straight l i n e  on a logarithmic scale, and t h e  amount of deviation of t h e  body 
shape curve from a s t r a igh t  l i n e  i s  a measure of t h e  inaccuracy of t h e  approxi- 
mation. The results presented i n  f igu re  4 indicate  t h a t  t he  approximation i s  
exact,- -c; --el. The value of p i s  about 0.75 f o r  fineness r a t i o s  
of 5 and 10, and i s  r e l a t ive ly  insens i t ive  t o  the  parameter 

Figures 4(a) and 4(b)  are 

p. 

I I 1 I . _ L . . . J . .  - . I  1 1 - 1  2 02 04 .06 .08 .IO 4 .6 8 10 

E 

(a) Fineness r a t i o ,  5 .  

c 

( b )  Fineness ra t io ,  10. 

Figure 4.- Minimum drag body shapes f o r  given length and base height .  

16 



The minimum drag body shapes f o r  given length and volume were computed by 
t he  method of s teepest  descent although some body shapes w e r e  computed f o r  
checking purposes by t h e  procedure outlined i n  t h e  sect ion "Specific Solutions. 'I 
The r e su l t s  of t he  computations a re  presented i n  f igures  5(a) and 5(b) fo r  
bodies with fineness r a t i o s  of 5 and 10, o r  
t i ve ly .  "The logarithmic p l o t s  i n  f igure  5 show t h a t  t he  body-shape curves 

1 t h e  shapes cannot be approximated by 11 = mkp." 

Z3/V of 63.71 and 297.05, respec- 

may not be approximated by a s t r a igh t  l i n e  except near t he  nose. Therefore, 1 
I 

,003 

,002 

.10 

.06 
.05 

.ut 

.01 

(a) Fineness ratio,  5 .  (b) Fineness ratio,  10. 

Figure 5.- Mini" drag body shapes for given length and volume. 

I n  f igure  6 ,  t h e  d i s t r ibu t ion  of t h e  cross-section area r a t i o  '10 c a l  

along t h e  body length i s  presented f o r  t h e  m i n i m  drag body shapes with given 
length and base height and given length and volume. It should be noted t h a t  
t he  area d i s t r ibu t ion  does not depend on t h e  e l l i p t i c i t y  parameter p i n  the  
i n t e r v a l  0.1 p 5 1.0. Furthermore, t h e  area d is t r ibu t ions  are va l id  f o r  
fineness r a t i o s  of 5 and 10. Therefore, f o r  t he  given conditions, t h e  range of 
t h e  e l l i p t i c i t y ,  and t h e  values of t he  fineness ra t io ,  it would be su f f i c i en t  t o  
calculate  only t h e  minimum-drag body shape f o r  one fineness r a t i o  and an e l l i p -  
t i c i t y  of uni ty  ( t h a t  is ,  a body of revolution).  
t i c i t i e s  and fineness r a t i o s  could then be obtained from the  resu l t ing  area 
d is t r ibu t ion .  

'base 

The shapes f o r  other  e l l i p -  

The e f f ec t  of the e l l i p t i c i t y  parameter on t h e  pressure drag coeff ic ient  
of t h e  minimum drag bodies i s  shown i n  f igure  7. For specif ied length and base 
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( a )  Given length and base height. (b)  Given length and volume. 

Figure 6.- Area dis t r ibut ion of m i n i "  drag bodies with fineness ra t ios  of 5 and 10. El l ipt ic i ty ,  
0.1 5 I.I i 1.0. 5 = X/l. 

(a)  Given length and base height .  

= 

.6 .% 1.0 

Body section e l l i p t i c i t y ,  p 

(b) Given length  and volume. 

Figure 7.- Pressure drag coef f ic ien t  f a c t o r  of minimum drag body shapes. Fineness r a t i o s  of 5 and 10. 
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height, t h e  drag coef f ic ien ts  have been multiplied by t h e  nondimensional r a t i o  
z2/+,; and f o r  specif ied length and volume, t h e  drag coef f ic ien ts  have been 
multiplied by the  nondimensional r a t i o  13/V. The drag-coefficient parameters, 
resu l t ing  from the  use of these  ra t ios ,  are independent of t h e  f ineness  ra t io ,  
yet  the  t rend of t he  var ia t ion  with e l l i p t i c i t y  i s  representat ive of t he  t rend 
f o r  t h e  drag coeff ic ient .  The drag-coefficient parameter f o r  t he  minimum drag 
body shapes f o r  specified length and base height increases by about 150 percent - . - I- -a-- . . -  

Page 19: The last  th ree  sentences of t he  paragraph continued a t  the  top of 
t h i s  page should be changed as follows: "The drag-coefficient parameter f o r  
t he  minimum drag body shapes f o r  specif ied length and base height and speci- 
f i e d  length and volume tends t o  decrease (although s l i g h t l y )  as t h e  body sec- 
t i ons  become more e l l i p t i c  ( f ig .  This r e su l t  agrees with the  theo re t i ca l  
and experimental r e s u l t s  of Jorgensen (ref.  2) for e l l i p t i c  cones." 

7). 

CONCLUDING REMARKS 

A t heo re t i ca l  study w a s  made t o  inves t iga te  t h e  problem of determining the  
shapes of bodies with cross-sectional e l l i p t i c i t y  having minimum pressure drag 
a t  hypersonic speeds and zero l i f t .  
conditions of given length and base height, given length and volume, given 
base height and volume, and given base height and surface area.  Much qual i ta-  
t i v e  information about t he  body shapes w a s  obtained without a r r iv ing  a t  a com- 
p l e t e  solut ion t o  the problem. Although closed-form ana ly t i ca l  solut ions were 
not obtained for each s e t  of given conditions, numerical solut ions may be 
obtained with an i t e r a t i v e  procedure. 

The r e s u l t s  obtained include bodies w i t h  

The second paragraph under CONCLUDING REMARKS should read: "Numerical com- 
putations f o r  bodies with given length and base height and given length and 
volume show t h a t  the  longi tudinal  area d i s t r ibu t ions  a r e  r e l a t ive ly  insensi-  
t i v e  t o  the  e l l i p t i c i t y  parameters for fineness r a t i o s  of 5 and 10. 
addition, t he  drag-coefficient parameters tended t o  decrease as the  bodies 
became more e l l i p t i c .  
mental r e su l t s  for e l l i p t i c  cones." 

I n  

The la t te r  r e su l t  agrees with theo re t i ca l  and experi- 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 14, 1964. 



APPEXDIX A 

METHOD OF STEEPEST DESCENT 

The method of steepest  descent has proven t o  be a powerful numerical com- 
puting t o o l  f o r  t h e  optimization of a controlled plant  when the  quantity to be 
optimized i s  a function of t he  f i n a l  values of t he  dependent variables.  Prob- 
lems i n  aerodynamics are  not usually thought of i n  terms of control theory and 
controlled plants .  However, i n  the  analysis of t he  problem of determining 
minimum drag shapes, t h e  method of s teepest  descent w a s  recognized as a useful 
computational t oo l .  
t i o n  of t h e  method of s teepest  descent t o  a controlled plant  having three  var- 
iab les  i s  presented. 
problem i s  given so tha t  the  method of s teepest  descent can be used. 

I n  the  following paragraphs, an exposition of t h e  applica- 

The necessary reformulation of t h e  m i n i m  drag body 

Let the s e t  of ordinary d i f f e r e n t i a l  equations oi' a system be 

& + ++ - = x = f (x(t),u(t!;t) 
dt 

where t h e  components of t he  vector 
t h e  f i s  a given vector-valued function, u ( t )  i s  the  control variable, and 
t i s  t h e  independent var iable  of t he  problem. 
cates d i f f e ren t i a t ion  with respect t o  t h e  independent var iable . )  
assumed t h a t  t he  l n i t i a l  condition vector 
w i l l  be "guessed" along t h e  nominal path. 
be integrated from t = to t o  t = T. (The subscript  o denotes i n i t i a l  con- 
d i t ions .  ) 

qt) are the  dependent s%Le variables, 
-+ 

(A  dot above a quantity indi-  

u ( t )  
It w i l l  be + 2( 0) = xo, i s  given and t h a t  

Thus, t h e  s e t  of equations (Al) may 

The l i n e a r  equations ( three  dimensional f o r  convenience) t h a t  describe 
s m a l l  perturbations about a nominal path a r e  
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I 

where 

[AI = 

and 

a12 

"22 

a32 

The elements of t h e  matrices [A] and m' 

I 

evaluated along the  nominal path. 

The s e t  of equations adjoint  t o  (A2) i s  defined t o  be: 

1 
h = -[*]*Z 

where [AJ" i s  t h e  transpose of [A]. The i t h  A ( t )  i s  t h e  influence func- 

t i o n  corresponding t o  t h e  i t h  state var iable  From equations (A2) and 
(A3) ,  t he  following equation may be obtained: 

x i ( t ) .  
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in tegra t ing  over t h e  in t e rva l  of t h e  path t = to t o  t = T gives 

It w i l l  be assumed t h a t  T i s  given and t h a t  one terminal constraint  i s  given. 

L e t  t he  quantity t o  be optimized be @(x(T)), a function depending on t h e  
f i n a l  values of t he  dependent var iables  ( f o r  example, t h e  function may be the  
f i n a l  value of @ ( x ( T ) )  = xl(T)  . xl, t h a t  is, Then l e t  

t = T  

be a s e t  of influence functions associated with @. Obviously, 

@(T) * 6Z(T) = S@(x(T)) 

and, hence, equation (A5) ,  t he  influence of i n i t i a l  conditions being neglected, 
becomes 

t o  

Now, i s  the  influence function t h a t  indicates  t he  e f f ec t  t h a t  s m a l l  
changes i n  the  control function & u ( t )  w i l l  have on @, t he  function t o  be 
optimized. 

?$t) 

-+ 
Suppose there  i s  a constraint  on x ( t )  which i s  

and construct, as previously, another s e t  of influence functions' associated 
with $, or 

JI h i  ( T )  = - axi hf I t=T 
- - - 

ulated by integrat ing equa- 
t i ons  ( A 3 )  from t = T t o  t = to and using equations ( A 6 )  and ( A 9 ) ,  respec- 
t ive ly ,  as i n i t i a l  conditions. 
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A s  i n  equation ( A 7 ) ,  the  influence of i n i t i a l  conditions being neglected, 

Now, t he  expression f o r  t h e  change i n  the  control vector t h a t  gives t h e  la rges t  
changes of $ and I# i n  t he  r igh t  d i rec t ion  i s  

where Kfi and I$ are  constants. Subst i tut ing ( A l l )  i n t o  (A7)  and (UO), 

two l i n e a r  equations f o r  t h e  two unknown constants Kfi and KI# are  obtained: 

which y ie lds  

where 

The three  in tegra ls  I$$, Iw, and I@ are  calculated simultaneously with 

the  influence functions. Now, 6$ and 6Jr are  "asked for"  changes i n  !d 
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and $. The changes are i n  a d i rec t ion  t o  optimize $ and t o  s a t i s f y  the  
constraint  (A8). From equation (All), h( t )  i s  computed and a new control 
vector U i s  determined f o r  t h e  next computer run, as 

'New = 'Old -I- 

The process i s  repeated several  times. 
t he  constraint  (A8) i s  approached, t h e  determinant i n  equations (A12) will tend 
toward zero. 
decreases enough t o  be troublesome because t h e  optimum path i s  essent ia l ly  
reached. 

When t h e  optimum path t h a t  satisfies 

The problem may as well be stopped whenever the  determinant 

The method of s teepest  descent may be used t o  determine the  body shape 
t h a t  minimizes the  pressure drag (assuming Newtonian flow and zero angle of 
a t tack)  where the  length and volume a re  given. 
i s  e l l i p t i c a l .  Some useful  def in i t ions  a re  given below. 

The cross section of t h e  body 

D pressure drag, l b  

2 body length, f t  

free-stream dynamic pressure, lb/sq f t  

v volume of body, cu f t  

X distance along center l i n e  of body (zero a t  nose of body) 

Y distance perpendicular t o  body center l i n e  (function of x) 

y(0,p) value of y f o r  specif ied p when x = 0 

P body sect ion e l l i p t i c i t y  ( r a t i o  of minor axis t o  major ax i s )  

The problem i s  made compatible with t h e  method of s teepest  descent by the  f o l -  
lowing change i n  notation. 

L e t  t he  independent var iable  be 

X t = -  
2 

L e t  t he  "control" var iable  be given by 

U ( t )  = y ' (x )  = - dY 
dx 

Let the  dependent var iables  (components of t he  vector ?(t)) be 
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1 
x 2 = - -  ’’ - xj2dt 

7[ 13 

Then t h e  set of d i f f e r e n t i a l  equations which describe t h e  problem i s  

3 
XZU 

2 
x2 = x3 

x3 = u 

The function t o  be minimized i s  

and t h e  constraint  equation i s  

With the  problem formulated i n  terms of equations ( ~ 8 ) ,  (Alg), and (A20), 
t h e  method outlined i s  immediately applicable.  
t h i s  method with a d i g i t a l  computer system have been obtained i n  less than 
3 minutes. 

Solutions t o  t h e  problem using 

I 
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